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As one of the most important senses in human beings, touch can also help robots better perceive 
and adapt to complex environmental information, improving their autonomous decision-making and 
execution capabilities. Compared to other perception methods, tactile perception needs to handle 
multi-channel tactile signals simultaneously, such as pressure, bending, temperature, and humidity. 
However, directly transferring deep learning algorithms that work well on temporal signals to tactile 
signal tasks does not effectively utilize the physical spatial connectivity information of tactile sensors. 
In this paper, we propose a tactile perception framework based on graph attention networks, which 
incorporates explicit and latent relation graphs. This framework can effectively utilize the structural 
information between different tactile signal channels. We constructed a tactile glove and collected a 
dataset of pressure and bending tactile signals during grasping and holding objects, and our method 
achieved 89.58% accuracy in object tactile signal classification. Compared to existing time-series signal 
classification algorithms, our graph-based tactile perception algorithm can better utilize and learn 
sensor spatial information, making it more suitable for processing multi-channel tactile data. Our 
method can serve as a general strategy to improve a robot’s tactile perception capabilities.

Keywords  Haptics, Deep learning, Time-series analysis, Graph attention networks, Tactile perception, 
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Human beings observe the world through their eyes and experience it through touch. Tactile perception, an 
important way of sensing, has garnered increasing attention in recent years. Tactile perception can provide 
different types of information compared to visual perception, such as temperature, weight, surface texture, and 
the softness and hardness of objects.

Tactile perception also plays a crucial role in many applications such as robotics, minimally invasive 
surgery1, advanced prosthetics2, and manufacturing3. As robots are increasingly deployed in unstructured 
and complicated environments4, they need to perform manipulative tasks like grasping objects with arbitrary 
unknown shapes and avoiding sliding while exerting minimal force on the objects. While the visual sensor 
can recognize and provide images of the target, these contact-less features are limited only to the appearance 
information and cannot acquire the physical properties of the target. On the other hand, the tactile sensor can 
recognize and provide physical property information of the target. Tactile feedback helps the manipulator to 
perceive the hardness5, roughness6,7, and friction8 of the target while grasping it, and adding tactile sensors to 
the manipulator can help to obtain tactile perception, which assists in estimating the stability of the target grasp 
and target recognition. Therefore, developing a method for robots to learn human tactile perception is an urgent 
scientific problem in the field of intelligent robot research.

Nowadays, deep learning has produced fruitful research results in the processing of complex data such as text, 
images, and voice. For instance, in tasks like object classification9, image segmentation10, and disease detection11, 
it has even surpassed human-level accuracy. It has even surpassed human-level accuracy in some complex tasks. 
The continuous development of deep learning and sensor technology has promoted interdisciplinary research 
on manipulator tactile perception. Currently, most tactile perception research uses computer vision to infer 
the tactile properties of objects, i.e., to predict the object type, weight, and material from the object image. 
However, the robustness of machine vision is low when the camera is exposed to variable light sources, such as 
living scenes. Also, when the object is non-rigid (easy to deform), it is challenging for the robot to achieve stable 
grasping based solely on the single tactile attribute of machine vision. To address these issues, researchers in 
robotics and vision have contemplated equipping robots with supplementary tactile sensors to enable them to 
acquire tactile information.
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The framework for robot tactile perception based on deep learning is illustrated in Fig. 1. The robot collects 
tactile data through sensors, such as pressure and bending sensors. Deep learning algorithms then extract 
meaningful features from the tactile data and fuse the features obtained from various sensors to acquire more 
comprehensive and precise tactile information. Finally, the robot’s movements are regulated or modified based 
on the fused tactile information to accommodate diverse tasks and environments.

However, there are several issues with the existing tactile perception algorithm based on deep learning.

	(1)	� Mostly based on vision rather than sensors: Due to the limitations of size, cost, and performance of tactile 
sensors, most existing tactile perception algorithms focus on using visual information to make cross-modal 
inferences about tactile information. These algorithms, which rely on visual input, do not take into account 
the structural characteristics of tactile signals and their perception accuracy is easily affected by environ-
mental factors.

	(2)	� Single tactile signal: Most robotic arms and tactile gloves only use pressure information collected by the 
pressure sensor on the device as a single tactile signal. A single pressure signal cannot fully represent mul-
ti-dimensional tactile signals. Just as when a human hand grasps an object, it will feel the deformation of 
the object through the pressure change of the palm and the curvature degree of the fingers, and then infer 
the softness and hardness of the object.

	(3)	� The physical spatial information among tactile sensors has not been utilized: The same and different types of 
tactile signals may be correlated in space. For example, when grasping an object, the pressure information of 
different positions of the hand is correlated, and the pressure information of the hand is also related to the 
curvature degree of fingers.

In this study, we address these issues by proposing a new sensor-based tactile perception framework using a 
graph attention mechanism, named Tactile-GAT. This framework leverages explicit and implicit relation graphs 
to enhance the classification performance of tactile signals.

Our contributions are outlined as follows:

	1.	� Utilization of Spatial Relationships: Unlike most methods that process temporal signals without consider-
ing spatial adjacency relationships, our Tactile-GAT framework explicitly utilizes the spatial relationships 
among multi-channel and multi-type tactile information. This approach allows for a more nuanced under-
standing and processing of tactile data.

	2.	� Graph Structure Networks: We demonstrate that graph structure networks are inherently more suitable for 
processing tactile signals compared to traditional methods. By adapting these networks to tactile perception, 
our framework can better capture the complex interdependencies between different tactile signals.

	3.	� Introduction of Embedding Layers: Our model includes embedding layers that learn the connectivity and 
weights between different tactile signals. This innovation allows for a dynamic and context-aware interpreta-
tion of tactile data, enhancing the robot’s ability to make informed decisions based on tactile input.

This paper is organized as follows: Sect.  Related work gives an overview of various methods for tactile 
perception classification, while Sect.  Dataset provides the dataset. Section  Tactile graph attention network 
discusses the proposed framework. Section Experiments and results focuses on results and analysis, and finally, 
Sect. Discussion and conclusion draws conclusions and provides perspectives.

Fig. 1.  The framework of robot tactile perception.
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Related work
Tactile perception ability can effectively help us plan and adapt and change our interaction strategy with objects 
and the environment in real-time. For example, when we observe that the object is slippery before grasping, 
we instinctively increase the grip force to increase friction; Similarly, when the object is deforming, we will 
adjust the grip force accordingly. To endow robots with the ability to acquire tactile information and enable 
them to more effectively handle various objects and environments in industrial environments and our daily 
settings, researchers have combined deep learning with tactile perception. Deep learning12 is a machine learning 
algorithm with a multi-layer structure that can extract higher-level features from the original input. By using 
adaptive feature extraction and classification modules, deep learning can achieve end-to-end learning and no 
longer rely on complex hand-crafted features. Deep learning can improve and expand existing tactile signal 
processing methods in multiple dimensions. It can extract features from unprocessed or minimally processed 
data to obtain more effective feature information and higher classification accuracy13.

Based on the representation forms of tactile signals, existing research methods can be divided into two 
categories: time-series tactile features and image-type tactile features.

Time-series tactile features
Time-series tactile features involve capturing tactile signals that vary over time, reflecting the dynamic interaction 
between the robot and the environment. These signals include temporal sequences of pressure, force, and other 
tactile data, which are crucial for recognizing textures, shapes, and other object properties.

Sundaram31 proposed a low-cost haptic glove with an array of 548 flexible pressure sensors. This glove collects 
tactile pressure maps of different objects, which are used with a deep convolutional neural network to extract 
features, enabling object recognition based solely on the sense of touch without the aid of vision.

Rasouli34 used piezoresistive fabrics to mimic the tactile sensing units in the skin. By touching a textured 
surface with an artificial finger equipped with a tactile sensor array, the collected temporal tactile signals are 
transformed into spike patterns. In the texture recognition task, ten graded textures can be classified with 92% 
accuracy.

Yan29 proposed a texture recognition method that uses a curved soft-tactile sensor and a long short-term 
memory (LSTM) model with an attention mechanism to recognize Braille characters and various fabrics. This 
approach processes sequential tactile data to effectively capture temporal patterns in the tactile signals.

The GTac-Hand32, which integrates advanced tactile sensors capable of detecting not only pressure but also 
shear forces, provides robots with detailed feedback about the objects they interact with, allowing for more 
nuanced manipulations in complex environments.

Satoshi33 developed a multi-fingered robotic hand enhanced with graph convolutional networks (GCNs) and 
1152 distributed tactile sensors for in-hand manipulation of diverse objects. This configuration leverages human 
manipulation data to adaptively adjust robot grip based on object properties such as size, shape, and hardness, 
enhancing the safety and robustness of handling fragile items.

The DIGIT sensor30, developed by Lambeta et al., represents a significant advancement in tactile technology. 
It is a compact and high-resolution sensor that captures detailed tactile images of object surfaces it contacts. This 
capability allows the sensor to detect fine surface textures and shapes, translating these physical interactions into 
digital tactile maps. These maps are then processed using deep learning algorithms to infer properties such as 
the object’s material composition, weight, and potential slipperiness.

Image-type tactile features
Image-type tactile features refer to devices or sensors that collect tactile signals directly or indirectly through 
cameras. Since the collected tactile information is presented in the form of images. This approach allows for the 
application of computer vision techniques to tactile data, and the processing algorithms differ from those used 
for time-series signals. It facilitates detailed analysis of surface textures, shapes, and other physical properties by 
leveraging image-based processing methods.

Due to the constraints of sensor size and cost, the existing touch sensors used for robotic tactile perception 
are mostly GelSight21–24, pressure25–28, bending, and friction sensors29.

Calendra35 proposed an action-conditioned depth model that combines a Gelsight sensor with an RGB 
camera. By jointly predicting manipulator grasping outcomes and planning action sequences using visual and 
tactile inputs, the model can improve grasping performance. Gao36 used convolutional neural networks (CNN) 
to extract features from visual and temporal tactile signals and demonstrated that visual data can be effectively 
transferred to tactile classification tasks in various but related tasks. Guo37 employed deep learning networks 
to detect proper grip rectangles for a robot when grasping objects by utilizing information from vision and 
multimodal tactile sensations. Experimental results indicate that integrating tactile data can improve the model’s 
ability to extract visual information from images. Kumra19 proposed Generative Residual Convolutional Neural 
Network (GR-ConvNet), which uses N-channel input images to infer the grasping rectangle of an object in 
the image and provides a grasping strategy for unknown objects. Additionally, Purri20 proposed a cross-modal 
framework that can learn complex mappings between visual information and tactile physical properties. The 
model can infer 15 tactile physical properties, including friction and texture, from multi-view images of an 
object’s surface.

Tactile signals have the following two characteristics:
Multi-dimensionality: Tactile signals involve various features, such as pressure, friction, temperature, and 

humidity, which are coupled with each other. However, there is still a lack of clear mapping models to represent 
these signal features comprehensively.
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Contextual Relevance: Tactile signals exhibit continuity in both time and space, with preceding and 
subsequent data showing causal changes. For example, there is a correlation in the spatiotemporal characteristics 
of pressure signals and a linkage relationship between multidimensional data.

In recent years, graph neural networks (GNNs)35 have been developed to model complex patterns in graph-
structured data. GNNs have practical applications in areas such as antibacterial discovery, physics simulations36, 
fake news detection37, traffic prediction38, and recommendation systems39. Within the context of robotic tactile 
perception, however, there remains a significant opportunity to enhance the processing and utilization of tactile 
signals.

Our approach, Tactile-GAT, introduces a novel application of Graph Attention Networks (GAT)40 specifically 
designed to address these challenges. By integrating explicit relationship graphs, Tactile-GAT captures the 
physical connectivity between tactile sensors, enhancing the model’s ability to interpret complex multi-channel 
tactile data. Furthermore, it learns latent relationships between sensors during model training, which significantly 
improves feature extraction and learning from tactile signals. This method not only diverges from traditional 
reliance on visual data in robotic systems but also offers a more refined analysis of tactile information, which is 
crucial for tasks requiring high precision and adaptability in dynamic environments. Through Tactile-GAT, we 
aim to bridge the existing gap in efficiently utilizing spatial information from tactile sensors, providing a robust 
framework that enhances the autonomy and decision-making capabilities of robots in real-world scenarios.

Dataset
Hardware setup
In our experiments, we used a hardware configuration comprising sixteen FSR402 force-sensitive sensors 
and six 2.2” flex sensors, as shown in Fig. 2. The FSR402 force-sensitive sensor is a circular flexible thin film 
pressure sensor with short legs, consisting of two layers that are glued together with double-sided tape. When 
external pressure is applied to the active area, the disconnected circuit of the lower layer is connected through 
the pressure-sensitive layer of the upper layer, thereby converting pressure into resistance. The output resistance 
decreases as pressure increases, and its pressure measuring range is from 20 g to 6 kg. One side of the flex sensor 
is printed with a polymer ink containing conductive particles. When the sensor is straight, the particles give the 
ink a resistance of about 30k Ohms. When the sensor is bent away from the ink, the conductive particles move 
further apart, increasing this resistance.

By combining the force and flex sensors with a static resistor to create a voltage divider, a variable voltage 
that can be read by a microcontroller’s analog-to-digital converter (ESP32) is produced. The ESP32’s ADC has 
a 12-bit resolution, enabling it to convert the analog signals into digital values ranging from 0 to 4095, where 0 
represents 0 volts and 4095 represents the maximum input voltage of 3.3 volts. This digital conversion is crucial 
as it facilitates the precise mapping of pressure and bending degrees into a format that can be processed for 
further analysis and application.

Fig. 2.  The position map of pressure and flex sensors on the tactile glove. (a) 16 pressure sensors (A-N) on the 
front side. (b) 6 flex sensors (Q-V) on the back side.
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These FSR402 sensors were installed on the palm and fingers of the glove, thoroughly recording the pressure 
changes on the hand contact surface when grasping objects. Simultaneously, the 2.2” Flex sensors installed on 
the fingers can measure bending angles from 0 degrees to nearly 180 degrees, accurately gauging the bending as 
the fingers move.

The physical and circuit diagram of the tactile glove are shown in Extended Data Fig. 1. This comprehensive 
setup not only captures detailed tactile information but also ensures that data is reliably processed and utilized 
in applications requiring high precision and responsiveness.

Data collection
Using the tactile glove, we recorded the pressure distribution and curvature degree of the hand when grasping 19 
different types of objects, which are shown in Extended Data Fig. 2. The tactile information of each object consists 
of a time series of 22 channels, including 16 pressure signals and 6 flex signals. We collected tactile information 
from objects by touching and holding them. To ensure the validity of the collected information, the object was 
grasped with just enough strength to hold it without slipping and in different poses. The process of collecting 
tactile signals from objects is shown in Fig. 3. Figure 3 includes two phases of object tactile signal acquisition 
(touching and grasping) and three actions. The blue and green lines represent the average of the normalized 
acquisition voltage of the 16-channel pressure sensors and 6-channel bend sensors, respectively. Compared 
to traditional three-channel haptic datasets, this dataset contains a 22-channel time series and includes two 
types of tactile information instead of just a single friction signal. The data sampling frequency is about 220 Hz, 
which means that the microcomputer records tactile information of 22 channels 220 times per second. In the 
foreseeable future, as the price and volume of tactile sensors decrease, more kinds of tactile sensors will be 
embedded in robots. And the immediacy of feedback also puts forward higher requirements on the sampling 
frequency of tactile signals. This dataset meets the characteristics of high sampling rate and multiple types of 
future haptic signals. We will verify the performance of our tactile perception algorithm based on this dataset.

Data processing and preparation
Eliminating Outliers: During the tactile data collection process, outliers may be introduced due to sensor 
malfunctions, operational errors, or external disturbances. To ensure data quality, we first eliminate values that 
exceed thresholds set based on the physical characteristics of the sensors and experimental experience. This 
step helps maintain the accuracy and reliability of our data. Data Normalization: Given the different ranges and 
sensitivities of the pressure and bend sensors, we performed normalization on these sensor data. Normalization 
is a key step in processing data from sensors with varying ranges and sensitivities, enhancing model training 
efficiency and performance. Time Window Segmentation: To transform continuous tactile signals into discrete 
samples suitable for model training, it is necessary to segment the data stream into fixed-size time windows. 
In our experiment, we defined the window length as 400 data points, with each new window overlapping 200 

Fig. 3.  The process of tactile data acquisition and examples of tactile signals. The figure includes two phases of 
object tactile signal acquisition (touching and grasping) and three actions. The blue and green lines represent 
the average of the normalized acquisition voltage of the 16-channel pressure sensors and 6-channel bend 
sensors, respectively.
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points from the previous window. This overlap ensures the continuity of data features, while also increasing the 
volume of data and enhancing temporal resolution. Training and Test Set Split: To evaluate model performance 
and ensure the model can generalize to unseen data, we adopted a data split strategy for the training, validation, 
and test sets in the ratios of 70%, 15%, and 15%, respectively.

Tactile graph attention network
Given one of sensors (i.e., multivariate time series) data from N  sensors of previous K  timestamps 
xi =

[
xt−K

i , · · · , xt−1
i

]
, i ∈ {1,2, . . . , N}. X = [x1, x2, · · · , xN−1, xN ] ∈ RN× T stands for the multivariate 

time-series input. In order to emphasize explicit relationships and uncover the latent relationships among multiple 
sensor time-series, we build explicit relationship graph G and latent relationship graph G′ . W ∈ RN×N  is the 
weight matrix of graph G′ , where wij > 0 indicates that there is an edge connecting nodes i and j, and the 
value of wij  indicates the weight of this edge.

Our goal is to predict the correct label Y  and recognize object in tactile signals X . The label Y  can be 
inferred by the forecasting model F  with parameter Φ  and graph structures G and G′ , where G′  can be input 
as prior or automatically inferred from data.

	 Y = F (X ;G;G′ ; Φ ) � (1)

Figure 4 provides an overview of the Tactile-GAT model architecture, which consists of three main parts: the 
prior explicit relation graph of tactile signal channels, the latent relation graph learned through the embedding 
layer during training, and the graph attention networks for feature extraction.

Embedding Layer: one-dimensional embedding layer, used to learn the latent correlations between different 
tactile signals, and based on the correlations learned by the model, to construct a potential adjacency matrix 
graph among multi-channel tactile signals.

Explicit Relation Graph: We input a graph G as prior based on distance and position from N  pressure and 
flex sensors. When grasping an object, the pressure sensors on the same finger are associated, and as the bending 
degree of the finger changes, the pressure will change accordingly. In explicit relation graph G, we connect 
adjacent sensors. The trained model F  can informed the physical relationships G among different sensor in 
advance and the information of adjacent channel will be passed and aggregated.

Latent Relation Graph: Latent relation graph G′  aims to learn the latent relationships between different 
sensors. To automatically infer weight matrix W  of G′  from data X , we introduce an embedding vector for 
each sensor to represent its characteristics: vi ∈ Rd, for i ∈ {1,2, . . . , N}, d indicates the dimension of each 
vector. Embedding vector is initialized randomly and updated when the model is trained. We calculate the 
similarity sij, the normalized dot product between the embedding vectors of sensor i and other sensors j. The 
large the value of sij, the more similar the embedding vectors are. A is the adjacency matrix of latent relation 
graph G′ , Aij = 1 means that node i and node j are connected. For each node i, we select K  nodes as its 
neighboring nodes based on the values of sij. TopK denotes top-k values among its input set.

	 i ∈ { 1, 2, . . . , N } , j ∈ { 1, 2, . . . , N } { i } � (2)

	 sij =
v⊤i vj

|vi|· |vj |
� (3)

Fig. 4.  Proposed framework (Tactile-GAT) for tactile signals classification.
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	 Aij = 1 if sij ∈ TopK (si1, si2, . . . , siN) � (4)

Graph Attention Network: Graph Attention Network (GAT) serves as a pivotal tool in the realm of graph 
convolutional networks due to its innovative attention mechanism. Unlike traditional graph convolution 
methods that treat all neighbors equally, GAT introduces an attention mechanism that dynamically learns the 
importance of each neighbor node during aggregation. This adaptive weighting of neighbors allows GAT to 
effectively handle scenarios with noisy or less relevant neighbor nodes, thereby enhancing the robustness of the 
model. Moreover, the attention mechanism provides interpretability by highlighting which neighbors contribute 
most significantly to each node’s representation, offering insights into the underlying relationships within the 
graph structure.

For explicit relation graph G  and latent relation graph G′ , W  is a trainable weight matrix to represent the 
relationship of features. And the attention coefficients α ij  are computed as:38

	 eij = a (Wxi,Wxj) = LeakyReLU
(
aT [Wxi ||Wxj]

)
� (5)

	
α ij = softmax (eij) =

exp(eij)∑
j∈ Ni

exp(eij)
� (6)

Where a (· ) is a function to expresses the importance of node i to node j. || denotes concatenation; Wxi ||Wxj 
concatenates the transformed features. aT  is the weight matrix connecting the layers in the neural network to 
each other, and LeakyReLu (· ) function is also added to the output layer. Then softmax (· ) normalize eij  
to be attention coefficients α ij, and the sum of all α ij  is 1. Ni denotes the neighbors of node i. Combining 
equations above, the complete attention mechanism can be put together as follows38.

	
α ij =

exp(LeakyReLU(aT [Wxi||Wxj]))∑
k∈ Ni

exp(LeakyReLU(aT [Wxi||Wxk]))
� (7)

The normalized attention coefficients between different nodes are used to predict the output characteristics of 
each node x′ i. the updated information from all nodes is passed into a fully connected neural network f  with 
parameter θ  to predict the label Y  of the grasping object38,39. 

	
x′ i = ReLU

(
α ijWxj +

∑
j∈ N⟩

α ijWxj

)
� (8)

	
Y = fθ

(
X̂
)

= fθ ([x
′
1, · · · , x′ N−1, x

′
N ]) � (9)

Graph attention networks utilize explicit relation graphs and latent relation graphs to perform weighted 
aggregation of multi-channel tactile signal features, thereby updating the feature representation of each node.

Fully Connected Network: After the tactile node features are extracted through the graph attention 
mechanism, they are ultimately classified using a fully connected network.

Experiments and results
Baselines
In our study, we compare the performance of our proposed method with 12 time series classification methods 
spanning various neural network architectures. Each model is briefly described along with its primary 
applications and how it differs from our method.

CNNs-based NNs: Fully Convolutional Network (FCN, Long, 2015)40: Originally designed for semantic 
segmentation, FCN’s ability to process entire images in one go makes it distinct for segmentation tasks but less 
so for sequence classification where temporal dynamics are crucial41; Residual Network (ResNet, He, 2015)42: 
Known for its deep architecture enabled by residual connections that combat vanishing gradients, ResNet is 
primarily used in classification and object detection, providing a strong baseline for performance comparison 
in feature learning41; An Explainable Convolutional Neural Network (XCM, Fauvel, 2021)43 : Focused on 
transparency, XCM offers insights into convolutional networks’ decision-making process, contrasting with typical 
black-box approaches44; ResCNN (Zou, 2019)45 : Enhances traditional CNNs by integrating residual learning, 
improving training stability and accuracy in both classification and detection scenarios46; InceptionTime 
(Fawaz, 2019)47,48(Rahimian, 2019) : Combines Inception modules to better handle time series data by capturing 
complex features at various scales, providing a robust comparison for temporal data analysis49; Omni-Scale 
1D-CNN (OmniScale, Tang, 2020)50 : Adapts convolutional approaches to capture features across multiple scales 
in a single-dimensional input, such as time series, enhancing detection and classification capabilities51.

RNN-CNNs-based NNs: Long Short-Term Memory Fully Convolutional Network (LSTM-FCN, Karim, 
2017)52 : Merges LSTM’s temporal processing abilities with FCN’s spatial feature extraction, making it suitable 
for tasks where both time and space dimensions are key53; Gated Recurrent Unit Fully Convolutional Network 
(GRU-FCN, Elsayed, 2018)54 : Utilizes GRU for handling temporal dependencies, combined with FCN for 
efficient spatial processing, ideal for sequential data that requires contextual understanding over time55.

Wavelet-based NNs: Multilevel wavelet decomposition network (mWDN, Wang, 2018)56: Employs wavelet 
analysis to decompose time series data, facilitating feature extraction at multiple resolutions, advantageous for 
classification tasks involving non-linear and non-stationary signals.
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MLP-base NNs: Gated Multilayer Perceptron (gMLP, Liu, 2021)57 : Integrates gating mechanisms to 
control information flow within MLP layers, enhancing the network’s ability to focus on relevant features for 
classification.

Each model showcases unique strengths in handling time series data. Our proposed method primarily 
evaluates different multi-channel time-series classification models based on their performance in classifying 
multi-category tactile signals. This comparative analysis not only demonstrates how our model excels in specific 
application areas but also highlights its practical value in processing complex tactile data tasks. Through this 
approach, we can more accurately assess and showcase the performance of different models in handling complex 
tactile signals.

Experimental setup
Model Architecture: Our model is designed to classify multi-category tactile signals effectively. It begins with 
an embedding layer that transforms the 22-dimensional input features into a 64-dimensional embedding space, 
facilitating higher-level feature representation. A batch normalization layer with 128 features follows to stabilize 
and accelerate the training process by normalizing inputs.

We employ two Graph Neural Network (GNN) layers to capture the relationships between different tactile 
inputs. Each GNN layer includes a graph convolutional layer with 200 input features and 64 output features, 
utilizing a single attention head. Batch normalization and activation functions (ReLU and LeakyReLU) are 
incorporated within each GNN layer to introduce non-linearity and maintain stable input distributions.

An output layer with a linear transformation maps the learned features to the final output. To prevent 
overfitting, a dropout layer with a probability of 0.2 is included. The architecture concludes with a final linear 
layer that projects the input features into a 20-dimensional output space corresponding to the number of classes.

Training Configuration: The model is trained using the Adam optimizer with a learning rate of 0.01 and a 
weight decay parameter specified in our configuration settings. Training is conducted over 50 epochs with a 
batch size of 256, balancing computational efficiency and model convergence. The cross-entropy loss function is 
used to measure the discrepancy between predicted and true class labels.

Performance comparison
The 12 baseline methods we compared in this study employed different network structures and algorithms 
for time series classification. Among them, the CNN-based methods mainly utilized convolutional neural 
networks to extract the feature information from the time series, while RNN-CNN-based methods combined 
the advantages of recurrent neural networks and convolutional neural networks to better capture the temporal 
features of the time series. The wavelet-based methods used wavelet decomposition for preprocessing the time 
series to obtain more representative features. MLP-based methods utilized a multilayer perceptron model for 
classification, which is advantageous for its simplicity and ease of implementation.

Our experimental results significantly demonstrate the effectiveness of our proposed method. On various 
tactile datasets, our Tactile-GAT model achieved an accuracy of 89.58%, with precision, recall, and F1 scores 
of 89.20%, 89.36%, and 0.8939, respectively, all markedly superior to other baseline methods. These evaluation 
results are detailed in Table 1, and the confusion matrix for Tactile-GAT is presented in Fig. 5.

Overall, Tactile-GAT exhibits superior performance in the task of classifying temporal tactile signals 
compared to existing time-series classification algorithms. Particularly, it excels with only 0.11  M in model 
parameters, demonstrating outstanding efficiency and effectiveness. The reduced number of model parameters 
not only indicates a simpler structure but also implies that our model can achieve faster training and inference 
speeds, as well as better generalization capabilities in practical applications. This makes Tactile-GAT especially 

Method Accuracy Precision Recall F1 Score Params

MLP 70.12 69.13 70.41 0.7941 20.51

XCM 76.34 76.67 75.87 0.7560 10.29

gMLP 79.94 80.20 79.93 0.7994 2.67

GRU-FCN 85.89 85.72 85.89 0.8574 0.54

xLSTM-FCN 86.75 86.66 86.76 0.8665 0.57

GCN 86.87 86.53 86.43 0.8648 0.36

mWDN 86.90 86.72 86.36 0.8650 0.60

FCN 87.20 86.60 87.21 0.8683 0.44

InceptionTime 87.49 87.55 87.58 0.8756 0.49

OmniScaleCNN 87.65 87.93 87.68 0.8777 0.39

XceptionTime 88.10 88.18 88.20 0.8819 0.43

xresnet1d34 88.55 88.61 88.64 0.8862 7.26

ResCNN 88.55 88.63 88.65 0.8864 0.36

ResNet 88.70 88.73 88.78 0.8875 0.58

Tactile-GAT (ours) 89.58* 89.20* 89.36* 0.8939* 0.11*

Table 1.  The classification accuracy (%), macro precision (%), macro recall (%), macro F1 score and model 
parameter count (M) of various models on the tactile datasets.
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suitable for resource-constrained devices, while also reducing the risk of overfitting, providing an efficient and 
reliable solution for tactile signal processing.

Notably, fewer parameters may limit the model’s capability to express complex functionalities, potentially 
hindering the model’s ability to capture all complex patterns and relationships in dynamic or complex datasets. 
Although models with fewer parameters are generally less prone to overfitting, if the model is overly simplistic, 
its generalization capability could be compromised, as it might not have learned enough to adapt to new, unseen 
data. Moreover, models with fewer parameters might be more sensitive to noise in the input data due to their 
limited learning and adaptation capabilities. Therefore, while preserving the key structure of the Tactile-GAT 
model, appropriately increasing the model’s complexity could help enhance its performance in classifying 
different types of complex multi-channel tactile signals, thus providing a more efficient and reliable solution for 
tactile signal processing.

To further validate the effectiveness of Tactile-GAT, we conducted a significance analysis using paired 
t-tests to compare Tactile-GAT with other time-series classification algorithms, as detailed in Extended Data 
Table 1. The results showed that Tactile-GAT exhibited high significance (p < 0.001) across multiple comparative 
methods, particularly when compared to multilayer perceptrons (MLP) and other complex models (such as 
XCM and gMLP). This indicates that Tactile-GAT significantly outperforms existing algorithms in classification 
performance. This analysis not only reinforces the advantages of Tactile-GAT but also provides a reference for 
future improvements in model complexity while maintaining efficiency, enabling better handling of complex 
multi-channel tactile signal classification tasks.

Ablation analysis
To better understand the effectiveness of different components in Tactile-GAT, we designed two model variants 
and conducted an ablation study on pressure signal only, flex signal only, and both tactile signal datasets. The 
results are summarized in Table 2.

All three models demonstrated good performance on the dataset containing only pressure signals. This is 
mainly because the pressure signals from 16 channels provide more comprehensive tactile information than the 
bending signals from just 6 channels. Pressure signals can capture fine differences in the contact between the 
object’s surface and the sensor, which are details that bending signals struggle to provide.

Conversely, the performance of the models on the dataset containing only bending signals was poor. This 
shortfall is due to bending sensors primarily measuring the degree of finger bending, which is not sensitive 
enough to changes in weight. This makes it difficult to distinguish between objects with similar sizes or shapes, 
such as apples and pears, using bending data alone. However, pressure sensors can effectively differentiate 
objects based on variations in the force exerted during grasping, even if the objects are similar in size and shape.

When both pressure and bending signals were used for classification, all three models significantly 
outperformed those that used only one type of signal. This enhanced performance underscores that bending 
signals provide supplementary information not captured by pressure signals alone, thereby enriching tactile 
feedback and improving classification accuracy. For instance, while pressure signals provide information about 
object hardness and weight, bending signals add valuable data about object shape and the hand’s grasping posture. 
This multimodal sensory approach more closely mimics human tactile perception and object recognition, 
thereby increasing the accuracy of classification tasks.

Among the three models, the ones using both explicit and latent graph module ( G + G′ +GAT ) exhibited 
better classification performance than the model that used a single graph. This result indicates that incorporating 

Fig. 5.  Training loss and confusion maps of Tactile-GAT in tactile classification task.
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both explicit relation graphs ( G) and latent relation graphs ( G′ ) in the models, by informing the model of the 
physical adjacency between sensors and allowing it to learn potential relations between different sensors, can 
effectively improve the accuracy of multi-channel, multi-category tactile signal classification, making full use of 
the comprehensive tactile information provided by combining pressure and flex signals.

Tactile relation graph
Figure 6a shows the physical connectivity of the pressure and flex sensors on the tactile glove. This is also the 
adjacency matrix of the explicit relation graph in the Tactile-GAT model. Figure 6b displays the adjacency matrix 
of the latent relation graph learned by the model during training, which represents the underlying relationships 
between the signal channels that the model has learned.

By comparing the two graphs, we can see that the latent graph is a complement to the explicit graph. It can 
automatically learn the connections between channel signals and infer these connections through the intrinsic 
structure, similarity, and other features of the data, rather than being directly given. Additionally, the latent 
relation graph can also remove channel connections that are physically connected but have small correlations or 
redundant information through training.

The latent graph is a directed graph that can provide directionality for the reference, dependency, and control 
relationships between tactile signal channels. For example, in the graph, there is a connection form the pressure 
sensor D at the tip of the little finger to the pressure sensor N on the thumb, but not the other way around. This 
may be because the use of the thumb is not always necessary when grasping an object, but the use of the little 
finger often requires the use of the thumb as well.

Fig. 6.  Adjacency map in explicit and latent relation graphs, where A-V represent individual sensors. (a) The 
adjacency map of explicit relation graph g. (b) the adjacency map of latent relation graph g′.

 

Method

Tactile 
signal

AccuracyPress Flex

G +GAT

✓ 86.89

✓ 24.66

✓ ✓ 88.63

G′ +GAT

✓ 85.17

✓ 48.24

✓ ✓ 88.46

G + G′ +GAT  (Tactile-GAT)

✓ 87.67

✓ 45.02

✓ ✓ 89.58

Table 2.  The results of ablation experiments of the Tactile-GAT model on different tactile datasets.
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Discussion and conclusion
Discussion
This study introduces a graph-based framework for tactile perception, Tactile-GAT, aimed at enhancing robots’ 
ability to process and understand multi-channel tactile information. We developed a tactile glove equipped with 
pressure and bending sensors and constructed a 22-channel dataset to validate the effectiveness of the Tactile-
GAT framework. Compared to existing multi-channel temporal signal algorithms, our method not only shows 
superior performance in tactile signal classification tasks but also operates with fewer parameters, making it 
more suitable for practical applications.

The results demonstrate that the Tactile-GAT framework can effectively utilize spatial relationships between 
multi-channel tactile signals, significantly enhancing robots’ tactile perception capabilities. This improvement is 
critical for applications requiring real-time tactile feedback, such as robotic grasping and manipulation tasks in 
unstructured environments.

Despite its promising performance, Tactile-GAT has some limitations. Due to sensor size and material 
constraints, we currently integrate only a limited set of sensors in the tactile glove, which restricts the model’s 
application potential in more complex environments. Additionally, the fewer parameters, while beneficial for 
avoiding overfitting and running on constrained devices, might limit the model’s ability to capture all complex 
patterns in highly dynamic datasets.

Future directions
Enhanced Sensor Integration: As Tactile-GAT continues to be validated and applied successfully, a significant 
area for future research is the integration of a broader array of sensors into the tactile glove. Currently, the glove 
incorporates basic pressure and bending sensors. Looking ahead, we plan to incorporate additional types of 
sensors, such as temperature, humidity, and vibration sensors, to provide more comprehensive tactile feedback. 
This multimodal sensor integration will enable the model not only to perceive the hardness and shape of objects 
but also to detect more complex properties like temperature and humidity, enhancing the glove’s sensory 
capabilities.

Cross-Modal Learning: Another promising direction for future research involves cross-modal learning. 
By integrating data from visual, auditory, and tactile sensors, a more comprehensive perceptual system can 
be developed. For example, integrating visual and tactile data could lead to more accurate identification of 
material properties or changes in an object’s state, thereby improving the robot’s ability to adapt to complex 
environments. This approach would leverage the strengths of each sensory modality to provide a richer, more 
robust understanding of the surroundings.

Real-World Application Testing: We also aim to focus on deploying the Tactile-GAT framework in real robotic 
systems and conducting necessary algorithm optimizations to ensure real-time performance. This includes 
simplifying and accelerating the framework to ensure it operates effectively on resource-constrained devices 
while maintaining high accuracy and responsiveness. By conducting deployment tests in real environments, 
we can not only validate the performance and stability of the model but also compare it with existing tactile 
processing technologies to accurately assess the advantages and potential applications of Tactile-GAT.

Conclusion
The proposed Tactile-GAT framework represents an innovative approach for processing tactile signals in 
robotics. By leveraging graph-based attention networks, our method demonstrates improved accuracy in tactile 
classification tasks, with an approximate 1.0% increase over existing state-of-the-art models such as ResNet. 
Tactile-GAT’s capability to effectively integrate multi-channel tactile information allows robots to perceive and 
respond to their environment more accurately and efficiently.

As robotics technology continues to evolve, we anticipate that Tactile-GAT will significantly enhance the 
precision and efficiency of robotic operations across diverse practical applications, providing new methodologies 
and insights into the field of robot tactile perception.

Data availability
The datasets used in this study are available upon request from the corresponding author (chenl103@chinate-
lecom.cn). All code for data cleaning and analysis associated with the current submission will be available at 
https://github.com/alanchancl/Tactile-GAT. Any updates will also be published on GitHub.
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